Localized and Delocalized Modes in the Tangent–Space Dynamics of Planar Hard Dumbbell Fluids

نویسندگان

  • Lj. Milanović
  • H. A. Posch
چکیده

Systems of hard dumbbells are, arguably, the simplest model for a molecular fluid composed of linear molecules. We study here the Lyapunov instability for two-dimensional systems containing qualitatively different degrees of freedom, translation and rotation. We characterize this instability by the Lyapunov spectrum, which measures the rate of exponential divergence, or convergence, of infinitesimal phase space perturbations along selected directions. We characterize the dependence of the spectrum and of the Kolmogorov-Sinai entropy on the density and on the dumbbell anisotropy, where the emphasis is on the thermodynamic limit. The phase space perturbation growing exponentially with a rate given by the maximum Lyapunov exponent is strongly localized in space, and this localization persists in the thermodynamic limit. The perturbations growing according to the smallest positive exponents, on the other hand, are represented by coherent wave-like structures spread out over the whole simulation box. Depending on the degeneracy of the associated exponents, these perturbations are either non-propagating transversal, or propagating longitudinal modes. Because of the analogy with the familiar hydrody-namic modes of continuum mechanics, the so-called Lyapunov modes promise to be of importance for understanding the dynamics of fluids and solids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 3 O ct 2 00 2 Lyapunov instability and collective tangent space dynamics of fluids

The phase space trajectories of many body systems charateristic of simple fluids are highly unstable. We quantify this instability by a set of Lyapunov exponents, which are the rates of exponential divergence, or convergence, of initial (infinitesimal) perturbations along carefully selected directions in phase space. It is demonstrated that the perturbation associated with the maximum Lyapunov ...

متن کامل

Lyapunov Instability and Collective Tangent Space Dynamics of Fluids

The phase space trajectories of many body systems charateristic of isimple fluids are highly unstable. We quantify this instability by a set of Lyapunov exponents, which are the rates of exponential divergence, or convergence, of infinitesimal perturbations along selected directions in phase space. It is demonstrated that the perturbation associated with the maximum Lyapunov exponent is localiz...

متن کامل

Lyapunov instability of two-dimensional fluids: Hard dumbbells.

We generalize Benettin's classical algorithm for the computation of the full Lyapunov spectrum to the case of a two-dimensional fluid composed of linear molecules modeled as hard dumbbells. Each dumbbell, two hard disks of diameter sigma with centers separated by a fixed distance d, may translate and rotate in the plane. We study the mixing between these qualitatively different degrees of freed...

متن کامل

Effects of shear and bulk viscosity on head-on collision of localized waves in high density compact stars

Head on collision of localized waves in cold and dense hadronic matter with and without shear and bulk viscosities is investigated. Non-relativistic dynamics of propagating waves is studied using the hydrodynamics description of the system and suitable equation of state. It will be shown that the localized waves are described by solutions of the Burgers equation. Simulations show that the propa...

متن کامل

Definition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics

In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001